
‭CISC 1115‬ ‭Homework 10‬

‭This homework will give you practice reading in data, writing to files, writing and calling‬
‭methods, and creating, populating, printing, sorting, searching, and modifying parallel‬
‭arrays.‬

‭Write a Java program to create a database of TV shows. Our database has been‬
‭compiled as a class.‬

‭First,‬‭use the classList.txt file already made for you here.‬‭(Download and import it, copy‬
‭it into a new text file with the title classList, etc. Do it however you see fit)‬

‭●‬ ‭In the main method, create four parallel arrays to hold each show’s: startYear,‬
‭title, countryOfOrigin, and endYear (this may be ONGOING) respectively.‬

‭●‬ ‭Create a method called‬‭readData()‬‭to populate the‬‭arrays from the classList.txt‬
‭file. The data is in the order of‬‭startYear, title,‬‭countryOfOrigin, endYear‬‭(each‬
‭piece of data is separated by a comma (',') Hint: the String class has a method‬
‭called split() that splits a given string around matches of the given regular‬
‭expression, how can we use this to read each piece of data into a separate‬
‭array?)‬

‭●‬ ‭Create a method called‬‭printData()‬‭that will print‬‭a header and the data from the‬
‭arrays to an output file in a four-column table format:‬‭startYear, title,‬
‭countryOfOrigin, endYear‬

‭●‬ ‭Use the selection sort algorithm to sort the data in the following way:‬

‭○‬ ‭Create a method called‬‭sortByYear()‬‭to sort the data‬‭in descending order‬
‭by startYear.‬

‭●‬ ‭Call the‬‭printData()‬‭method to print to file, each‬‭with a specific header of how the‬
‭data is sorted (e.g. “Sorted by Premiere Year:”)‬

‭●‬ ‭Use the bubble sort algorithm to sort the data in the following way:‬

‭○‬ ‭Create a method called‬‭sortByTitle()‬‭to sort the data‬‭in alphabetical order‬
‭(A-Z) by title‬

https://amaraauguste.github.io/courses/CISC1115/homeworks/SP25%20classList.txt

‭●‬ ‭Call the‬‭printData()‬‭method again to print to file, each with a specific header of‬
‭how the data is sorted (e.g. “Sorted by Title (A-Z):”)‬

‭●‬ ‭Once sorted alphabetically, use the following method to create a new array that‬
‭holds each title only once:‬

‭public static int removeDuplicateShows(int numberOfShows, String[] startYear, String[]‬
‭title, String[] countryOfOrigin, String[] endYears, String[] uniqueShows) {‬

‭if (title.length == 0 || title.length == 1) {‬
‭return title.length;‬

‭}‬

‭int uniqueCount = 0;‬
‭boolean[] isDuplicate = new boolean[title.length];‬

‭for (int i = 0; i < numberOfShows; i++) {‬
‭if (!isDuplicate[i]) {‬

‭uniqueShows[uniqueCount++] = title[i];‬
‭for (int j = i + 1; j < numberOfShows; j++) {‬

‭if (!isDuplicate[j] && title[i].equals(title[j])) {‬
‭if (!countryOfOrigin[i].equals(countryOfOrigin[j])) {‬

‭uniqueShows[uniqueCount++] = title[j] + " (" + countryOfOrigin[j] + ")";‬
‭}‬
‭isDuplicate[j] = true;‬

‭}‬
‭}‬

‭}‬
‭}‬

‭return uniqueCount;‬
‭}‬

‭●‬ ‭Create a method called‬‭mostPopular()‬‭that will answer‬‭the following question:‬
‭what is the most popular show?‬‭(which show(s) show‬‭up on the list the most‬
‭frequently) and print to the output file. (If more than one show shows up the most,‬
‭you only need to print the first one encountered -- hint: remember the code for‬
‭determining the most frequent integer)‬

‭●‬ ‭Create methods for searching the data by title, country, or ongoing status. (hint:‬
‭use a separate method for each)‬

‭○‬ ‭search for show by title‬
‭○‬ ‭search for all shows that have the same country of origin‬

‭○‬ ‭search for all shows that are currently ongoing‬
‭■‬ ‭if not found output error:‬

‭"Unfortunately there is no record of that show in this list."‬
‭■‬ ‭if found:‬

‭Title (Year) Country‬

‭●‬ ‭Create a method called‬‭addShow()‬‭that prompts the‬‭user to add a new show to‬
‭the data‬

‭○‬ ‭prompt the user for the show that they would like to add‬
‭○‬ ‭the show cannot be already on the list BUT can be a remake‬‭from a‬

‭different country‬‭(so it CANNOT have the same title‬‭AND‬
‭countryOfOrigin)‬

‭○‬ ‭If the show is not already on the list:‬
‭■‬ ‭add title, startYear, endYear (or ONGOING), and countryOfOrigin‬

‭The output file should be in the following order:‬

‭●‬ ‭The entire data set, ordered by year‬
‭●‬ ‭The entire data set, ordered by title‬
‭●‬ ‭What the most popular show is‬
‭●‬ ‭The show, country, and ongoing status searched for, and the results of‬

‭each search‬
‭●‬ ‭The updated data set, ordered by title‬

‭Print everything except for prompts to an output file.‬

‭Submit the Java file and the output file.‬

